
Link�oping Electronic Articles in
Computer and Information Science

Vol� �������� nr 		

Link�oping University Electronic Press
Link
oping� Sweden

http���www�ep�liu�se�ea�cis����������

Lossless Compression of

High�volume Numerical Data

from Simulations

Vadim Engelson� Peter Fritzson� and Dag Fritzson



Published on December �� ���� by
Link�oping University Electronic Press

��� �	 Link�oping� Sweden

Link�oping Electronic Articles in

Computer and Information Science

ISSN �
�����
�
Series editor Erik Sandewall

c����� Vadim Engelson� Peter Fritzson� and Dag Fritzson
Typeset by the author using FrameMaker

Recommended citation�

�Author�� �Title�� Link�oping Electronic Articles in
Computer and Information Science� Vol� ������� nr ���
http���www�ep�liu�se�ea�cis����������� December �� �����

This URL will also contain a link to the author�s home page�

The publishers will keep this article on�line on the Internet
�or its possible replacement network in the future�

for a period of �� years from the date of publication�
barring exceptional circumstances as described separately�

The on�line availability of the article implies
a permanent permission for anyone to read the article on�line�

to print out single copies of it� and to use it unchanged
for any non�commercial research and educational purpose�

including making copies for classroom use�
This permission can not be revoked by subsequent

transfers of copyright� All other uses of the article are
conditional on the consent of the copyright owner�

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper� which were archived in Swedish university libraries
like all other written works published in Sweden�

The publisher has taken technical and administrative measures
to assure that the on�line version of the article will be
permanently accessible using the URL stated above�

unchanged� and permanently equal to the archived printed copies
at least until the expiration of the publication period�

For additional information about the Link�oping University
Electronic Press and its procedures for publication and for

assurance of document integrity� please refer to
its WWW home page http���www�ep�liu�se�

or by conventional mail to the address stated above�



Abstract

Applications in scienti�c computing operate with high�volume

numerical data and the occupied space should be reduced� Tra�

ditional compression algorithms cannot provide su�cient com�

pression ratio for such kinds of data� We propose a lossless

algorithm of delta�compression �a variant of predictive coding�

that packs the higher�order di	erences between adjacent data el�

ements� The algorithm takes into account varying domain �typ�

ically
 time� steps� The algorithm is simple
 it has high perfor�

mance and delivers a high compression ratio for smoothly chang�

ing data� Both lossless and lossy variants of the algorithm can

be used� The algorithm has been successfully applied to the out�

put from a simulation application that uses a solver of ordinary

di	erential equations�

This work has been upported by SKF AB�

An abstract of this paper has been published in the Proceedings of the

���� IEEE Data Compression Conference� Snowbird� Utah� March

������ �����

Authors� a�liations

Vadim Engelson and Peter Fritzson

Department of Computer and Information Science

Link�oping University

Link�oping
 Sweden

Dag Fritzson

SKF Nova AB

G�oteborg
 Sweden



1

Contents

1 Introduction 1
1.1 Smoothness of the data . . . . . . . . . . . . . . . . . . . 2
1.2 Compression and data representation . . . . . . . . . . . . 3

2 Fixed-Step Delta-Compression 3
2.1 Internal Representation of Double Values. . . . . . . . . . 4
2.2 Definition of differences . . . . . . . . . . . . . . . . . . 4
2.3 Truncating meaningless bits. . . . . . . . . . . . . . . . . 6
2.4 The difference compression algorithm . . . . . . . . . . . 6

3 Using Fixed Step Extrapolation 7
3.1 Decompressing . . . . . . . . . . . . . . . . . . . . . . . 8

4 A Varying Step Extrapolation Algorithm 8

5 Experiments 9
5.1 Experiments with wavelet-based algorithms . . . . . . . . 9
5.2 Artificially designed test sequences. . . . . . . . . . . . . 10
5.3 Application to simulation results . . . . . . . . . . . . . . 11
5.4 Lossy compression . . . . . . . . . . . . . . . . . . . . . 11

6 Conclusion 12

1 Introduction

Applications in scientific computing often operate with large volumes of in-
put and output data. Despite the huge capacity of the modern disk devices,
the space required for data storage is often larger than the hardware allows.
Data transfer over communication networks is another bottleneck in scien-
tific computing. Text compression tools cannot compress binary numeric
data. Image compression algorithms are not intended for such data. Signal
compression algorithms do not work directly with numerical data of time
series, when time steps are varying. Also, they are typically designed for
measured values, not for simulation results and therefore not intended for
lossless compression. Therefore new data compression algorithms must be
designed.

We assume that application data is stored as one or multiple arrays, i.e.
time1 series. The elements of the arrays are certain quantities that change
smoothly (see Section 1.1). Informally, a smooth function is a function
that is close to some polynomial. Smooth arrays contain a sequence of
values of this function. Smooth arrays are typical for numerical dynamic
simulations of physical phenomena where scalar values change in time. An
investigation of these values reveals several things: properties of the solver,
properties of mathematical model, and of course, the physical phenomena

1We use time as the domain for the steps; however in PDE-based simulations it can be a
space axis.



2

themselves. The values are consequently computed after each other. Often
these quantities change so slowly that nearby elements differ in the few
last digits only. Sometimes the elements of an array are computed from
respective elements of another array so that the correlation between the
values can be found. These numerical properties might result in a very high
compression ratio. The problem is how to discover all the features of the
data and how to use them for data compression.

Algorithm Good for time steps: Ratio

Differences fixed good
Delta- Extrapolation with fixed step fixed (same as above) good
compression Extrapolation with varying step varying best

Wavelet algorithms fixed poor or N/A

Table 1: Comparison of algorithms described in the paper.

In section 1.2 we discuss why general-purpose compression algorithms
do not work with numerical data from simulations. In section 2 we intro-
duce the simplest delta-compression algorithm (see Table 1) based on fixed
time steps. Properties of memory representation for real numbers are dis-
cussed. In section 3 we reformulate the algorithm by using extrapolation
formulas. In section 4 we extend the algorithm for varying steps, because
such data arrays are more typical for simulations.

Experiments with artificial data sequences as well as data samples from
a realistic application have been carried out and compression ratios are re-
ported in Section 5 .

1.1 Smoothness of the data

The compression algorithm input is a sequence a consisting of values ai,
i � �� ���� n. It works with arbitrary sequences of numerical values. How-
ever, it can deliver some considerable compression ratio for smooth data
sequences only, where substantial correlation between adjacent data values
can be found.

Assume that a function f � ��� n� � R is evaluated on time interval
��� n�. The values ai are stored in the sequence, a so that ai � f�i�.

An array a is called smooth of order m if every aj (j � m) can be
well approximated by the extrapolating polynomial based on previous m
values2. In the simplest case, if a function that has very small and slow
changes (is close to a polynomial of order 0, i.e. a constant) then the corre-
sponding array a can be compressed very well.

In practice smooth functions represent solutions of ordinary differential
equations and various continuous quantities that are computed in simula-
tions.

2Formally, each polynomial �j is created from aj�m� ���� aj�� and �j�j� � aj



3

1.2 Compression and data representation

The traditional text compression algorithms cannot compress numerical
data because these do not utilize correlation between adjacent floating point
values. Text compression algorithms represent the data as a string in an
small alphabet (0..255) and attempt to find equal substrings, producing loss-
less compression.

Image compression algorithms represent the data as small rectangular
blocks of pixels (usually three values in the 0..255 alphabet) and if the pix-
els in the block have similar color then the algorithm replaces color infor-
mation in all the pixels by a single color, giving lossy compression. Such
algorithms utilize correlation between adjacent data values, but do not use
similarity of the gradient (speed of the changes) of the data.

Another approach to the problem consists of signal compression algo-
rithms. These use data smoothness but do not consider the fact that time
steps vary. Very few of them can provide lossless compression, and com-
pression ratio is insufficient in this case.

Representation of numerical data in computer memory is important for
our compression algorithm. It is assumed that 64-bit real numerical val-
ues are used. This data representation corresponds to the type double in
most C compilers, operating systems and processor architectures used for
numeric computations (Intel, Alpha, Sparc families, etc.).

Let us consider how the numerical data are represented in the memory.
If p is a floating point 64-bit number, Int�p� is defined as an integer that is
represented by the same 64-bit string as p (see Table 2 and more details in
Section 2.1). In this paper we use hexadecimal notation for such numbers
to emphasize the byte-level representation.

byte number 1 2 3 4 5 6 7 8
a� 2.3667176745585676 Int�a�� 40 02 ef 09 ad 18 c0 f6
a� 2.3667276745585676 Int�a�� 40 02 ef 0e eb 46 23 2f
a� 2.3667376745585676 Int�a�� 40 02 ef 14 29 73 85 6a

Table 2: Integer representation of three real numbers

Three real numbers a�� a�� a� differ in the 5-th digit after the decimal
point only. It is a linearly growing sequence. Each number occupies 64
bits. The first three bytes are almost the same, and the general-purpose
algorithms for compression of byte sequences can use this fact for com-
pression. However, the problem is that the five last bytes (in bold ) are
perceived as completely random. There is no correlation between these
five bytes of one number and five bytes of another number. Traditional
compression algorithms cannot compress these bytes.

2 Fixed-Step Delta-Compression

In this section we consider the simplest variant of delta-compression al-
gorithm. Our algorithm computes the first (and higher-order) differences



4

using 64-bit integer arithmetic; subsequently meaningless 0s or 1s are trun-
cated in the result.

2.1 Internal Representation of Double Values.

The function Int�p� has been defined as the integer representation of the
64-bit memory area allocated for a floating point number p. Here p can be
any machine number between mindouble and maxdouble3. This memory
contains4 concatenation of one sign bit, 11 exponent bits and 52 mantissa
bits. The function Int� �mindouble�maxdouble� � f�� ���� 	�� � �g is
continuously growing everywhere except in 0. This function is very close
to linear on every interval such as �	k� 	k���, ���	
 � k � ��	
. A
fragment of the function graph is shown in the Figure 1(a), where Int�x�
is given in hexadecimal notation.

The function Real�x� is opposite to Int�x�, i.e. the equality Real�Int�x�� �
x occurs.

For integer p, the Bin�p� r� is an r-bit sequence of zeros and ones of
the binary representation of p (� � r � ��, jpj � 	r).

2.2 Definition of differences

Let us assume that an array b containing 64-bit integers bi, i � �� ���� n is
given. The first difference is defined as �bi � bi � bi��. The m-th
difference is defined in a similar way as mbi � m��bi �m��bi��.

Instead of storing the whole array b we can just store the m-th differ-
ences for b. In this case we need storage for n values:

�b�� b�� ���� bm�
mbi���

mbi��� ����
mbn�

The sequence b can be unambiguously restored from the m-th differ-
ences. Since b elements are integers, they are restored without loss of pre-
cision.

The difference between two 64-bit integers can be stored in 64 bits.
In general case 65 bits would be needed, but we utilize the wrap-around
feature of computer integer arithmetics. This feature can be illustrated by
computation:

If b� � 	�� � � and b� � ��	�� � �� then b� � b� produces 2. Also,
b� � 	 � b�.

From above it can be concluded that a sequence b of length n can be
stored as m-th differences for b , and it will not occupy more than the same
memory i.e. ��n bits.

3Normally mindouble � ������ and maxdouble � ����� are predefined compiler
constants.

4This description can be processor-dependent; it holds for Intel, Alpha and Sparc fam-
ilies. The numbers can be investigated by a trivial C program. Order of bytes is, however,
different: Intel and Alpha are “little-endian”, whereas Sparc is “big-endian”. This is taken
into account by compression/decompression routines.



5

0 0.5 1 1.5 2 2.5

3fdccccccccccccd

3fe0000000000000
3fe199999999999a
3fe3333333333334
3fe4ccccccccccce
3fe6666666666668
3fe8000000000002
3fe999999999999c
3feb333333333336
3fecccccccccccd0
3fee66666666666a
3ff0000000000000
3ff199999999999a
3ff3333333333334
3ff4ccccccccccce
3ff6666666666668
3ff8000000000002
3ff999999999999c
3ffb333333333336
3ffcccccccccccd0
3ffe66666666666a
4000000000000000
400199999999999a

(a)

a1

a4

t1 t2 t3 t4

a3
a2

c3

c4

time

f

(b)

Figure 1: (a) The graph of function Int�x�. (b) Finding first order differ-
ences c� and c�.



6

2.3 Truncating meaningless bits.

We can use the fact that the difference between the array elements is small
relatively to the element values.

Small integer numbers have many initial zeroes (in positive numbers)
or ones (in negative numbers) in their binary representation. These mean-
ingless bits can be truncated. For instance, zeroes in 00000101 can be
truncated and just 0101 is stored. Formally, truncating of bit sequences
can be described as follows:

Assume, s is a binary digit sequence of k elements �s�� ���� sk� where
si � f�� �g. Then Drop�s� is defined as such substring �sl� ���� sk� that all
digits at the beginning of the original sequence are equal: s� � s� � � � � �
sl after which some other digit follows: sl �� sl��.

Two extreme cases are defined: Drop��� � � � �� � Drop��� � � and
Drop��� � � � �� � Drop��� � �.

For instance, Drop�00000101�=0101,Drop�1111111101001�=101001.

2.4 The difference compression algorithm

The algorithm compresses a sequence of real numbers a to bit sequence e
using differences of order m. It consists of the following steps:

— The integer values are taken instead of real: bi � Int�ai�, i �
�� ���� n;

— First m values are copied: ci � bi for i � �� ����m;
— The m-th order differences are computed: ci � mbi for i � m�

�� ���� n. See c� and c� on Figure 1(b). Further the systematic coding method
is applied to c, i.e.:

— Only necessary bits are selected di � Drop�Bin�ci� ����;
— The bit string length5 and the bit string itself are stored:

ei � Concatenate�Bin�Length�di�� ��� di�

where Concatenate is the bit string concatenation operator.
— All ei are concatenated to the single bit string e � Concatenate�e�� ���� en�.
The sequence a can be restored again from e unambiguously by reverse

operations6.
For an example (see bi in Table 2),
�b� � b� � b� = 00 00 00 05 3e 2d 62 39
�b� � b� � b� = 00 00 00 05 3e 2d 62 3b
�b� � �b� ��b� = 00 00 00 00 00 00 00 02
It can be noted that the first difference requires 5 bytes (more exactly,

36 bits). The second difference requires no more than 3 bits (010). Also,
6 bits are used to encode the length. Assuming that the algorithm stores b�,

5Note that there can be various approaches for length storage, for instance ei �
Concatenate�di� ENDMARKER�, but we found that our solution is close to optimal. This
length can be coded in 6 bits because �� � ��.

6It can be done since the result of 64-bit integer addition and subtraction is identical on
all processors working with 64-bit integers.



7

b� and �b� and compression ratio ��� � 
����� � 	 � � � 
� � ����� is
achieved.

Normally there is no smoothness in the sequence e, therefore it cannot
be compressed further7.

3 Using Fixed Step Extrapolation

The algorithm of differences of order m can be formulated differently in
terms of extrapolation of order (m � �). When this reformulation is per-
formed, just slightly different8 computations take place, and these can be
seen from different point of view. We introduce the extrapolation technique
here (instead of differences) in order to proceed later to varying step extrap-
olation algorithm in Section 4.

The fixed step difference algorithm works well if the sequence Int�a�
can be approximated by polynomials. In real applications, however, it
would be better to assume that a can be approximated by polynomials9.

To explore this approach the traditional Lagrange extrapolation formula
[5] should be used. The Lagrange rule for extrapolation of order m � �
states that for function f�x� and extrapolation points x�� ���� xm there exists
a polynomial �m�x� such that �m�xi� � f�xi� for i � �� ����m. The
polynomial10 can be found as �m�x� � L��x�f� � � � ��Lm�x�fm� where
fi � f�xi� and

Li�x� �
�x� x�� � � � �x� xi����x� xi��� � � � �x� xm�

�xi � x�� � � � �xi � xi����xi � xi��� � � � �xi � xm�

The compression algorithm using fixed step extrapolation of order m�
� first takes a sequence of real numbers a and produces a sequence of inte-
gers c.

First, m first values are copied: cj � Int�aj� for j � �� ����m.
Subsequently, every cj where j � m��� ���� n is sequentially computed

as follows:
1. The m extrapolation points to the left of j are chosen: x� � j �

m� ���� xm � j � �.
2. Correspondingly, function values are set as f� � aj�m� ���� fm �

aj��.
3. The predicted value �m�x� for x � j is computed using the La-

grange formula.
4. The extrapolation residual (difference between actual and predicted

value) is stored (therefore our method is a variant of predictive coding).

7Relatively small additional smoothness can be found in the sequence of Length�di�,
but we ignore this for brevity.

8Discussed in more detail in [2] .
9The correlations between two and more arrays (a���� a���� a���� ���� a�r�) of the same

length can be taken into account. It might produce a high compression ratio, specially
if appears that a�k� � p�t� a���� a���� a���� ���� and p is a polynomial. These correlations can
be discovered automatically, however this is rather time consuming.

10Note that the term xi� xi is always skipped in the divider. If x� � j� 	, x� � j � �,
x� � j � � then ���j� � f�j � 	�� 	f�j � �� 
 	f�j � ��.



8

Since we expect that this difference is very small, the values are first con-
verted to the integer representation and then subtracted: cj � Int�aj� �
Int��m�j��

Subsequently, the necessary operations with c are performed just like
in the Section 2.4.

3.1 Decompressing

The original sequence a can be unambiguously restored from the com-
pressed sequence:

First, sequence of integers c is restored from the bit string e.
Then first m values are copied: aj � Real�cj� for j � �� ����m.
After that from every cj where j � m��� ���� n the value aj is sequen-

tially computed as follows:
1. The m extrapolation points to the left of j are chosen: x� � j �

m� ���� xm � j � �.
2. Correspondingly, function values are set as f� � aj�m� ���� fm �

aj��.
3. The predicted value �m�x� for x � j is computed using the La-

grange formula.
4. The actual value is computed as the sum of predicted value and the

residual:
aj � Real�Int��m�j�� � cj�

Evaluation of �m�j� includes double precision arithmetic that can po-
tentially can produce different results on different processors, since they
use different techniques to round up multiplication or division results to
fit it into 64-bit space. To guarantee lossless decompression, it should be
performed on the same processor family as compression. Otherwise an er-
ror in the last bit might appear, accumulate and lead to losing numerical
accuracy11.

The algorithm is fast since the coefficients for Lagrange formula are
computed efficiently and only once (see [2] for details)

4 A Varying Step Extrapolation Algorithm

The previous algorithms assumed that the sequence a can be approximated
by polynomials with fixed steps between extrapolation points. However, in
practice simulations use adaptive ODE solvers and produce state variable
values for varying, non-equidistant time steps. Therefore we should con-
sider smooth functions with values taken with varying steps, and adapt the
compression algorithm for such application data.

Assume that a function f � �tmin� tmax� � R is evaluated during the
simulation.

11Our experiments with Sparc and Alpha processor families show that the difference is
never greater than the 2-3 last bits when extrapolation of 3rd order is used and n � ���.



9

A finite number (n) of function values is produced by the solver for
time steps �t�� ���� tn� (where tmin � t�, tmax � tn , ti � ti��) and these
are stored in the sequence a so that ai � f�ti�.

The sequence t is used for compression and decompression of a. The
sequence t itself should be compressed by the fixed step difference algo-
rithm.

The compression algorithm using varying step extrapolation of order
m � � first takes the sequence of real numbers a and t and produces a
sequence of integers c.

First, m first values are copied: cj � Int�aj� for j � �� ����m. Sub-
sequently every cj where j � m � �� ���� n is sequentially computed as
follows:

1. Them extrapolation points to the left of j are chosen: x� � tj�m� ���� xm �
tj��.

2. Correspondingly, function values are set as f� � aj�m� ���� fm �
aj��.

3. The predicted value �m�x� for x � tj is computed using the La-
grange formula.

4. The residual (difference between actual and predicted value) is stored.
Since we expect that this difference is very small, the values are first

converted to the integer representation and then subtracted: cj � Int�aj��
Int��m�tj��

Subsequently the necessary operations with c are performed just like in
the Section 2.4.

The original sequence a can be unambiguously restored from the com-
pressed sequence under conditions described in the Section 3.1.

5 Experiments

In this section we describe the experimental application of both our algo-
rithms — higher order differences (suitable for fixed steps) (orders 2, 4, 6,
8, 10) and varying step extrapolation (of orders 1, 3, 5, 7, 9). The compres-
sion ratios are compared with two wavelet algorithms (Section 5.1). There
were two major tests: artificially designed test sequences and output from a
high-precision numerical simulation of a mechanical model using the ODE
solver.

5.1 Experiments with wavelet-based algorithms

A widely used family of algorithms for numerical data compression are
wavelet transforms. Without going into details about wavelet theory and
taxonomy of transforms we just describe two transforms we experimented
with.

Assuming that a sequence has some correlation between neighboring
elements, the wavelet transform computes an “average” value s and “dif-
ference value” d. For arbitrary integer q � � the transform compresses
a sequence a�� ���� aQ, where Q � 	q�� � �, by running through levels



10

r � q� q � �� ���� �. On the level r the sequence considered is a�� ���� aR,
where R � 	r�� � �. Furthermore there are certain rules defining how to
compute the sequence for level r � �.

The simplest wavelet transform, Haar wavelet [1], computes on level p
by the formulae

si � �a�i � a�i����	� di � a�i�� � a�i i � �� ���� 	r � �

The number of bits needed for di is relatively small; lossy compression al-
gorithms using wavelets might ignore it; the lossless algorithm stores them.
The elements si become ai on the next level of transform.

The sequence a can be recovered by a�i � si�di�	� a�i�� � si�di�	.
This algorithm is specially successful for sequences which change very

slowly and close to a polynomial function. Mainly wavelet algorithms are
used for lossy compression.

There is, however, a modification, called TT-transform [4], used for
lossless compression: si � b�a�i � a�i����	c� di � a�i � a�i�� � pi�

where pi is defined by pi � b�
si�� � 		si�� � 		si�� � 
si�� �

	����c�

and the sequence can be restored by a�i � si�b�di�pi����	c� a�i�� �
si � b�di � pi��	c

Both Haar and TT transforms were applied to compression and decom-
pression. Just as in Section 2.4 six bits were always used to encode the
length of the bit strings. The experiments show that the compression ratio
for lossless compression is insufficient.

5.2 Artificially designed test sequences.

The test sequences for testing the algorithms were designed. These se-
quences contain 64-bit double precision numbers. We took into considera-
tion that the sequence for the test cases should be rather smooth as a whole,
but they should also contain small local non-smooth variations.

The size of the sequence N is chosen as 	� or 	�� (see Table 3). The
longer sequence has smaller differences between adjacent elements and
therefore is compressed better.

The sequence a with fixed time steps is defined as ai � F �i�N� where
i � � � � � N and

F �x� � ��	����x����x������� cos����x��������� cos������x����� sin���x�

The time step is constant 1, i.e. ti � i. The table shows that sequences with
the fixed time step can be compressed equally well by both our algorithms
(see repetitions in columns under ”fixed”)). The best ratio achieved is 3.68.

For testing of a sequence with varying time step we use ti � ti�� �
imod� � � and ai � F �	���ti�	��� where i and F are as above. Here
time steps vary from 1 to 4. Therefore the algorithm using varying step
extrapolation provides a better result than the algorithm using differences
(3.73 versus 1.3).



11

Ratio
Time step: fixed varying

Number of values: 	� 	�� 	� 	��

m � 	 1.58 1.64 1.45 1.53
Differences 4 1.81 1.9 1.43 1.51

of order 6 2.12 2.27 1.33 1.42
m 8 2.52 2.8 1.27 1.35

(Section 2.4) 10 3.13 3.68 1.23 1.3

Varying m � � 1.58 1.64 1.58 1.65
step m-th 3 1.8 1.9 1.81 1.91

order 5 2.11 2.27 2.12 2.29
extrapolation 7 2.51 2.8 2.54 2.83
(Section 4) 9 3.11 3.68 3.16 3.73

Wavelet TT 1.7 1.86 1.23 1.67
Haar 1.39 1.47 1.19 1.4

Table 3: Compression ratios for various data sequences and various algo-
rithms.

5.3 Application to simulation results

The compression algorithms were applied to the output from a numeri-
cal solver of ordinary differential equations which serves as a component
in our software for dynamic simulation of bearing [3]. The program pro-
duces some quantities for every time step and writes them to the output file
for analysis and further simulation. Every quantity (position, force etc.)
changes very slowly from one step to another. Extreme accuracy and loss-
less compression is necessary, since a relative error of order ����� can
substantially change the simulation results.

To choose a particular algorithm and its order the compression routines
estimate achievable compression ratio by subsampling, trying different al-
gorithms and choosing the best one.

The 2837 arrays from a single simulation were analyzed. The compres-
sion ratio varies between 2.5 and 10. The algorithms were automatically
chosen as follows:

— difference, first order - 20% of all arrays12, second order - 3%, 3rd
order - less than 1% of all arrays.

— varying step extrapolation, first order -10 %, second order - 17%,
third order - 51%. If the 4th order extrapolation is proposed, it takes 30%,
but compression ratio is almost the same as in the 3rd order extrapolation.

5.4 Lossy compression

There are four different applications of data saved by the compression al-
gorithm:

— simulation can be restarted from any time step;

12These arrays are not smooth. It took 40 bits per 64-bit number to compress them.
Compression ratio was 1.6.



12

— simulation results are used in another computation;
— intermediate simulation results are sent between nodes in parallel

simulation;
— simulation results are visualized in form of 2D function graphs and

3D model animations.
Only the last application allows using lossy compression. Other appli-

cations require a lossless one.
The lossy compression is an extension of the basic algorithm. It can be

parameterized in order to adjust the trade-off between the precision and the
compression ratio.

The lossy compression can be achieved by cutting away some c bits at
the end of the bit string representation. To compensate for the error, one
exact value is followed by some p lossy compressed values.

The user would be interested to choose the pair (c,p) for given sequence
a in such a way that during decompression the absolute and relative error
do not exceed �abs and �rel correspondingly.

There is a straightforward way to do this, but it requires some extra
computations during compression.

First we use an interval �amin
i � amax

i �, where amin
i � min�ai��abs� ai�

�reljaij�, amax
i � max�ai � �abs� ai � �reljaij�.

Subsequently interval arithmetic is used in order to obtain �dmin
i � dmax

i �.
Then di is easily chosen from this interval in such way that it occupies the
minimal possible number of bits.

6 Conclusion

A lossless algorithm for floating-point data compression has been devel-
oped. It has similarities to image compression since it works on bit level.
It resembles wavelet compression since it uses floating-point computations
for compression and decompression. The algorithm works best if the data
are values of a function at some points, and this function is close to a poly-
nomial.

The algorithm uses subtraction of one 64-bit integer representation of a
floating-point value from another (Int�aj� � Int��m�tj��). If the differ-
ence were computed between floating-point representations (aj ��m�tj�),
there would be no gain in data storage.

The algorithm is implemented as a C++ class and linked to an industrial-
level application. The measurements show a high compression ratio (in
comparison with traditional tools) as well as high speed[2]. In the future
we are going to test and measure the algorithm with data samples from
other applications.

Acknowledgments

Professor Robert Forchheimer (ISY, Linköping University) contributed many
suggestions regarding the algorithms discussed.



13

References

[1] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. H.
Salesin, W. Stuetzle. Interactive multiresolution surface view-
ing. Proceedings of SIGGRAPH 96, in Computer Graphics
Proceedings, Annual Conference Series, 91-98, August 1996,
http://www.cs.washington.edu/research/projects/grail2/www/pub/abstracts.html
#InterMultSurfView

[2] Vadim Engelson, Dag Fritzson, Peter Fritzson,On Delta-compression
Algorithm for Numerical Data from ODE-based Applications in Scien-
tific Computing
Technical report, Linköping Electronic Articles in Computer and Infor-
mation Science, ISSN 1401-9841, Vol. 5 (2000), to appear.

[3] Dag Fritzson, Peter Fritzson, Patrik Nordling, Tommy Persson. Rolling
Bearing Simulation on MIMD Computers. International Journal of Su-
percomputer Applications and High Performance Computing, 11(4),
1997.

[4] M. J. Gormish, E. L. Schwartz, A. Keith, M. Boliek, A. Zandi, Loss-
less and nearly lossless compression for high quality images Proc. of
IS&T/SPIE’s 9th Annual Symposium, Vol. 3025, San Jose, CA, Febru-
ary 1997.

[5] L. Råde, B. Westergren, Beta - Mathematics Handbook, Studentlitter-
atur and Chartwell-Bratt, 1988, p. 336.




